Sitemap

A list of all the posts and pages found on the site. For you robots out there is an XML version available for digesting as well.

Pages

Posts

Future Blog Post

less than 1 minute read

Published:

This post will show up by default. To disable scheduling of future posts, edit config.yml and set future: false.

Blog Post number 4

less than 1 minute read

Published:

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

Blog Post number 3

less than 1 minute read

Published:

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

Blog Post number 2

less than 1 minute read

Published:

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

Blog Post number 1

less than 1 minute read

Published:

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

portfolio

publications

Track-to-Learn: A general framework for tractography with deep reinforcement learning

Published in Medical Image Analysis, 2021

Diffusion MRI tractography is currently the only non-invasive tool able to assess the white-matter structural connectivity of a brain. Since its inception, it has been widely documented that tractography is prone to producing erroneous tracks while missing true positive connections. Recently, supervised learning algorithms have been proposed to learn the tracking procedure implicitly from data, without relying on anatomical priors. However, these methods rely on curated streamlines that are very hard to obtain. To remove the need for such data but still leverage the expressiveness of neural networks, we introduce Track-To-Learn: A general framework to pose tractography as a deep reinforcement learning problem. Deep reinforcement learning is a type of machine learning that does not depend on ground-truth data but rather on the concept of “reward”. We implement and train algorithms to maximize returns from a reward function based on the alignment of streamlines with principal directions extracted from diffusion data. We show competitive results on known data and little loss of performance when generalizing to new, unseen data, compared to prior machine learning-based tractography algorithms. To the best of our knowledge, this is the first successful use of deep reinforcement learning for tractography.

Recommended citation: Antoine Théberge, Christian Desrosiers, Maxime Descoteaux, Pierre-Marc Jodoin, "Track-to-Learn: A general framework for tractography with deep reinforcement learning." Medical Image Analysis, 2021. https://www.sciencedirect.com/science/article/pii/S1361841521001390

talks

teaching

IFT780: Réseaux de neurones

Graduate course, Université de Sherbrooke, Faculté des Sciences, Département d'informatique, 2021

Local: D3−2040
Périodes de cours: Lundi 15:30−16:20, Mardi 15:30−17:20